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OFFLOAD PROCESSOR MODULES FOR
CONNECTION TO SYSTEM MEMORY, AND
CORRESPONDING METHODS AND
SYSTEMS

PRIORITY CLAIMS

This application claims the benefit of U.S. Provisional
Patent Applications 61/753,892 filed on Jan. 17, 2013,
61/753,895 filed on Jan. 17, 2013, 61/753,899 filed on Jan.
17,2013, 61/753,901 filed on Jan. 17, 2013, 61/753,903 filed
on Jan. 17, 2013, 61/753,904 filed on Jan. 17, 2013, 61/753,
906 filed on Jan. 17,2013, 61/753,907 filed on Jan. 17, 2013,
and 61/753,910 filed on Jan. 17, 2013, the contents all of
which are incorporated by reference herein.

TECHNICAL FIELD

The present invention relates generally to processing mod-
ules, and more particularly to offload processing modules that
can be physically connected to a system memory bus to
process data independent of a host processor of the system.

BACKGROUND

Enterprises often rely on input/output (IO) intensive net-
worked applications running on dedicated servers that sup-
port associated “state”, context or session-defined applica-
tions. Servers can run multiple applications, each associated
with a specific state running on the server. Common server
applications include an Apache web server, a MySQL data-
base application, PHP hypertext preprocessing, video or
audio processing with Kaltura supported software, packet
filters, application cache, management and application
switches, accounting, analytics, and logging.

Unfortunately, servers can be limited by computational and
memory storage costs associated with switching between
applications. When multiple applications are constantly
required to be available, the overhead associated with storing
the session state of each application can result in poor perfor-
mance due to constant switching between applications.
Dividing applications between multiple processor cores can
help alleviate the application switching problem, but does not
eliminate it. Advanced processors often only have eight to
sixteen cores, while hundreds of application or session states
may be required.

Enterprises also store and process their large amounts of
data in a variety of ways. One manner in which enterprises
store data is by using relational databases and corresponding
relational database management systems (RDBMS). Such
data, usually referred to as structured data, may be collected,
normalized, formatted and stored in an RDBMS. Tools based
on standardized data languages such as the Structured Query
Language (SQL) may be used for accessing and processing
structured data. However, it is estimated that such formatted
structured data represents only a tiny fraction of an enter-
prise’s stored data. All organizations are becoming increas-
ingly aware that substantial information and knowledge
resides in unstructured data (i.e. “Big Data”) repositories.
Accordingly, simple and effective access to both structured
and unstructured data are seen as necessary for maximizing
the value of enterprise informational resources.

However, the platforms that are currently being used to
handle structured and unstructured data substantially differ in
their architecture. In-memory processing and Storage Area
Network (SAN)-like architecture are used for traditional SQL
queries, while commodity or shared nothing architectures
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(each computing node, consisting of a processor, local
memory, and disk resources, shares nothing with other nodes
in the computing cluster) are usually used for processing
unstructured data.

A computing system architecture, hardware, and opera-
tional method that supports input-output (IO) intensive net-
worked applications, as well as structured and unstructured
data queries is needed. Such a system needs to readily handle
high throughput data processing, be able to provide high
parallelism for dividing tasks among multiple processors, and
further provide efficient context switching to support multiple
users or applications.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1-0 shows a system according to an embodiment.

FIG. 1-1 shows a system flow according to an embodiment.

FIGS. 2-0 to 2-3 show processor modules according to
various embodiments.

FIG. 2-4 shows a conventional dual-in-line memory mod-
ule.

FIG. 2-5 shows a system according to another embodi-
ment.

FIGS. 2-6 to 2-11 show processor module operations
according to an embodiment.

FIG. 2-12 shows a method according to an embodiment.

FIG. 2-13 shows a method according to another embodi-
ment.

FIG. 3 shows protocol stacks for processors according to
embodiments.

FIG. 4 shows a partitioning of system loads according to an
embodiment.

FIG. 5 shows a partitioning of system loads according to
another embodiment.

FIG. 6 shows a method according to another embodiment.

DETAILED DESCRIPTION

Various embodiments of the present invention will now be
described in detail with reference to a number of drawings.
The embodiments show processing modules, systems, and
methods in which offload processors are included on offload
modules that connect to a system memory bus. Such offload
processors are in addition to any host processors connected to
the system memory bus, and can operate on data transferred
over the system memory bus independent of any host proces-
sors. In particular embodiments, offload processors have
access to a low latency memory, which can enable rapid
storage and retrieval of context data for rapid context switch-
ing. In very particular embodiments, processing modules can
populate physical slots for connecting in-line memory mod-
ules (e.g., DIMMs) to a system memory bus.

In some embodiments, computing tasks can be automati-
cally executed by offload processors according to data
embedded within write data received over the system
memory bus. In particular embodiments, such write data can
include a “metadata” portion that identifies how the write data
is to be processed.

FIG. 2-0 is a block diagram of a processing module 200
according to one embodiment. A processing module 200 can
include a physical in-line module connector 202, a memory
interface 204, arbiter logic 206, offload processor(s) 208,
local memory 210, and control logic 212. A connector 202
can provide a physical connection to system memory bus.
This is in contrast to a host processor which can access a
system memory bus via a memory controller, or the like. In
very particular embodiments, a connector 202 can be com-
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patible with a dual in-line memory module (DIMM) slot of'a
computing system. Accordingly, a system including multiple
DIMM slots can be populated with one or more processing
modules 200, or a mix of processing modules and DIMM
modules.

A memory interface 204 can detect data transfers on a
system memory bus, and in appropriate cases, enable write
data to be stored in the processing module 200 and/or read
data to be read out from the processing module 200. In some
embodiments, a memory interface 204 can be a slave inter-
face, thus data transfers are controlled by a master device
separate from the processing module. In very particular
embodiments, a memory interface 204 can be a direct
memory access (DMA) slave, to accommodate DMA trans-
fers over a system memory initiated by a DMA master. Such
a DMA master can be a device different from a host processor.
In such configurations, processing module 200 can receive
data for processing (e.g., DMA write), and transfer processed
data out (e.g., DMA read) without consuming host processor
resources.

Arbiter logic 206 can arbitrate between conflicting
accesses of data within processing module 200. In some
embodiments, arbiter logic 206 can arbitrate between
accesses by offload processor 208 and accesses external to the
processor module 200. It is understood that a processing
module 200 can include multiple locations that are operated
on at the same time. It is understood that accesses arbitrated
by arbiter logic 206 can include accesses to physical system
memory space occupied by the processor module 200, as well
as accesses to resources (e.g., processor resources). Accord-
ingly, arbitration rules for arbiter logic 206 can vary accord-
ing to application. In some embodiments, such arbitration
rules are fixed for a given processor module 200. In such
cases, different applications can be accommodated by switch-
ing out different processing modules. However, in alternate
embodiments, such arbitration rules can be configurable.

Offload processor 208 can include one or more processors
that can operate on data transferred over the system memory
bus. In some embodiments, offload processors can run a gen-
eral operating system which can run an application, such as
Apache (as but one very particular example), enabling pro-
cessor contexts to be saved and retrieved. Computing tasks
executed by oftload processor 208 can be handled by the
hardware scheduler. Offload processors 208 can operate on
data buffered in the processor module 200. In addition or
alternatively, offload processors 208 can access data stored
elsewhere in a system memory space. In some embodiments,
offload processors 208 can include a cache memory config-
ured to store context information. An offload processor 208
can include multiple cores or one core.

A processor module 200 can be included in a system hav-
ing a host processor (not shown). In some embodiments,
offload processors 208 can be a different type of processor as
compared to the host processor. In particular embodiments,
offload processors 208 can consume less power and/or have
less computing power than a host processor. In very particular
embodiments, offload processors 208 can be “wimpy” core
processors, while a host processor can be a “brawny” core
processor. In alternate embodiments, offload processors 208
can have equivalent computing power to any host processor.
In very particular embodiments, a host processor can be an
x86 type processor, while an offload processor 208 can
include an ARM, ARC, Tensilica, MIPS, Strong/ARM, or
RISC type processor, as but a few examples.

Local memory 210 can be connected to offload processor
208 to enable the storing of context information. Accordingly,
an offload processor 208 can store current context informa-
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tion, and then switch to a new computing task, then subse-
quently retrieve the context information to resume the prior
task. In very particular embodiments, local memory 210 can
be a low latency memory with respect to other memories in a
system. In some embodiments, storing of context information
can include copying an offload processor 208 cache.

In some embodiments, a same space within local memory
210 is accessible by multiple offload processors 208 of the
same type. In this way, a context stored by one offload pro-
cessor can be resumed by a different offload processor.

Control logic 212 can control processing tasks executed by
offload processor(s). In some embodiments, control logic 212
can be considered a hardware scheduler that can be concep-
tualized as including a data evaluator 214, scheduler 216 and
a switch controller 218. A data evaluator 214 can extract
“metadata” from write data transferred over a system memory
bus. “Metadata™, as used herein, can be any information
embedded at one or more predetermined locations of a block
of' write data that indicates processing to be performed on all
or a portion of the block of write data and/or indicate a
particular task/process to which the data belongs (e.g., clas-
sification data). In some embodiments, metadata can be data
that indicates a higher level organization for the block of write
data. As but one very particular embodiment, metadata can be
header information of one or more network packets (which
may or may not be encapsulated within a higher layer packet
structure).

A scheduler 216 can order computing tasks for offload
processor(s) 208. In some embodiments, scheduler 216 can
generate a schedule that is continually updated as write data
for processing is received. In very particular embodiments, a
scheduler 216 can generate such a schedule based on the
ability to switch contexts of offload processor(s) 208. In this
way, on-module computing priorities can be adjusted on the
fly. In very particular embodiments, a scheduler 216 can
assign a portion of physical address space (e.g., memory
locations within local memory 210) to an offload processor
208, according to computing tasks. The offload processor 208
can then switch between such different spaces, saving context
information prior to each switch, and subsequently restoring
context information when returning to the memory space.

Switch controller 218 can control computing operations of
offload processor(s) 208. In particular embodiments, accord-
ing to scheduler 216, switch controller 218 can order offload
processor(s) 208 to switch contexts. It is understood that a
context switch operation can be an “atomic” operation,
executed in response to a single command from switch con-
troller 218. In addition or alternatively, a switch controller
218 can issue an instruction set that stores current context
information, recalls context information, etc.

In some embodiments, processor module 200 can include a
buffer memory (not shown). A buffer memory can store
received write data on board the processor module. A buffer
memory can be implemented on an entirely different set of
memory devices, or can be a memory embedded with logic
and/or the offload processor. In the latter case, arbiter logic
206 can arbitrate access to the buffer memory. In some
embodiments, a buffer memory can correspond to a portion of
a system physical memory space. The remaining portion of
the system memory space can correspond to other like pro-
cessor modules and/or memory modules connected to the
same system memory bus. In some embodiments buffer
memory can be different than local memory 210. For
example, buffer memory can have a slower access time than
local memory 210. However, in other embodiments, buffer
memory and local memory can be implemented with like
memory devices.
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In very particular embodiments, write data for processing
can have an expected maximum flow rate. A processor mod-
ule 200 can be configured to operate on such data at, or faster
than, such a flow rate. In this way, a master device (not shown)
can write data to a processor module without danger of over-
writing data “in process”.

The various computing elements of a processor module
200 can be implemented as one or more integrated circuit
devices (ICs). It is understood that the various components
shown in FIG. 2-0 can be formed in the same or different ICs.
For example, control logic 212, memory interface 214, and/or
arbiter logic 206 can be implemented on one or more logic
1Cs, while offload processor(s) 208 and local memory 210 are
separate ICs. Logic ICs can be fixed logic (e.g., application
specific ICs), programmable logic (e.g., field programmable
gate arrays, FPGAs), or combinations thereof.

Advantageously, the foregoing hardware and systems can
provide improved computational performance as compared
to traditional computing systems. Conventional systems,
including those based on x86 processors, are often ill-
equipped to handle such high volume applications. Even
idling, x86 processors use a significant amount of power, and
near continuous operation for high bandwidth packet analysis
or other high volume processing tasks make the processor
energy costs one of the dominant price factors.

In addition, conventional systems can have issues with the
high cost of context switching wherein a host processor is
required to execute instructions which can include switching
from one thread to another. Such a switch can require storing
and recalling the context for the thread. If such context data is
resident in a host cache memory, such a context switch can
occur relatively quickly. However, if such context data is no
longer in cache memory (i.e., a cache miss), the data must be
recalled from system memory, which can incur a multi-cycle
latency. Continuous cache misses during context switching
can adversely impact system performance.

FIG. 2-1 shows a processor module 200-1 according to one
very particular embodiment which is capable of reducing
issues associated with high volume processing or context
switching associated with many conventional server systems.
A processor module 200-1 can include ICs 220-0/1 mounted
to a printed circuit board (PCB) type substrate 222. PCB type
substrate 222 can include in-line module connector 202,
which in one very particular embodiment, can be a DIMM
compatible connector. IC 220-0 can be a system-on-chip
(SoC) type device, integrating multiple functions. In the very
particular embodiment shown, an IC 220-0 can include
embedded processor(s), logic and memory. Such embedded
processor(s) can be offload processor(s) 208 as described
herein, or equivalents. Such logic can be any of controller
logic 212, memory interface 204 and/or arbiter logic 206, as
described herein, or equivalents. Such memory can be any of
local memory 210, cache memory for offload processor(s)
208, or buffer memory, as described herein, or equivalents.
Logic IC 220-1 can provide logic functions not included IC
220-0.

FIG. 2-2 shows a processor module 200-2 according to
another very particular embodiment. A processor module
200-2 can include ICs 220-2, -3, -4, -5 mounted to a PCB type
substrate 222, like that of FIG. 2-1. However, unlike FIG. 2-1,
processor module functions are distributed among single pur-
pose type ICs. IC 220-2 can be a processor IC, which can be
an offload processor 208. IC 220-3 can be a memory IC which
can include local memory 210, buffer memory, or combina-
tions thereof. IC 220-4 can be a logic IC which can include
controllogic 212, and in one very particular embodiment, can
be an FPGA. IC 220-5 can be another logic IC which can
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include memory interface 204 and arbiter logic 206, and in
one very particular embodiment, can also be an FPGA.

Itis understood that FIGS. 2-1 and 2-2 represent but two of
various implementations. The various functions of a proces-
sor module can be distributed over any suitable number of
I1Cs, including a single SoC type IC.

FIG. 2-3 shows an opposing side of a processor module
200-1 or 200-2 according to a very particular embodiment.
Processor module 200-3 can include a number of memory
ICs, one shown as 220-6, mounted to a PCB type substrate
222, like that of FIG. 2-1. It is understood that various pro-
cessing and logic components can be mounted on an oppos-
ing side to that shown. A memory IC 220-6 can be configured
to represent a portion of the physical memory space of a
system. Memory ICs 220-6 can perform any or all of the
following functions: operate independently of other proces-
sor module components, providing system memory accessed
in a conventional fashion; serve as buffer memory, storing
write data that can be processed with other processor module
components, or serve as local memory for storing processor
context information.

FIG. 2-4 shows a conventional DIMM module (i.e., it
serves only a memory function) that can populate a memory
bus along with processor modules as described herein, or
equivalents.

FIG. 2-5 shows a system 230 according to one embodi-
ment. A system 230 can include a system memory bus 228
accessible via multiple in-line module slots (one shown as
226). According to embodiments, any or all of the slots 226
can be occupied by a processor module 200 as described
herein, or an equivalent. In the event all slots 226 are not
occupied by a processor module 200, available slots can be
occupied by conventional in-line memory modules 224. In a
very particular embodiment, slots 226 can be DIMM slots.

In some embodiments, a processor module 200 can occupy
one slot. However, in other embodiments, a processor module
can occupy multiple slots.

In some embodiments, a system memory bus 228 can be
further interfaced with one or more host processors and/or
input/output device (not shown).

Having described processor modules according to various
embodiments, operations of a processor module according to
particular embodiments will now be described.

FIGS. 2-6 to 2-11 show processor module operations
according to various embodiments. FIGS. 2-6 to 2-11 show a
processor module like that of FIG. 2-0, along with a system
memory bus 228, and a buffer memory 232. It is understood
that in some embodiments, a buffer memory 232 can part of
processor module 200. In such a case, arbitration between
accesses via system memory bus 228 and offload processors
can be controlled by arbiter logic 206.

Referring to FIG. 2-6, write data 234-0 can be received on
system memory bus 228 (circle “1”). In some embodiments,
such an action can include the writing of data to a particular
physical address space range of a system memory. In a very
particular embodiment, such an action can be a DMA write
independent of any host processor. Write data 234-0 can
include metadata (MD) as well as data to be processed (Data).
In the embodiment shown, write data 234-0 can correspond to
a particular processing operation (Session0).

Control logic 212 can access metadata (MD) of the write
data 234-0 to determine a type of processing to be performed
(circle “2”) and/or classification of such data. In some
embodiments, such an action can include a direct read from a
physical address (i.e., MD location is at a predetermined
location). In addition or alternatively, such an action can be an
indirectread (i.e., MD is accessed via pointer, or the like). The
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action shown by circle “2” can be performed by any of: a read
by control logic 212 or read by an offload processor 208.

From extracted metadata, scheduler 216 can create a pro-
cessing schedule, or modify an existing schedule to accom-
modate the new computing task (circle “3”). Referring to
FIG. 2-7, in response to a scheduler 216, the switch controller
218 can direct one or more offload processors 208 be begin
processing data according to MD of the write data (circles
“4”, “5”). Such processing of data can include any of the
following and equivalents: offload processor 208 can process
write data stored in a buffer memory of the processor module
200, with accesses being arbitrated by arbiter logic 206, oft-
load processor 208 can operate on data previously received,
offload processor 208 can receive and operate on data stored
at a location different than the processor module 200.

Referring to FIG. 2-8, additional write data 234-1 can be
received on system memory bus 228 (circle “6”). Write data
234-1 can include metadata that indicates a different process-
ing operation (Session1) than that for write data 234-0. Con-
trollogic 212 can access metadata (MD) of the new write data
234-1 to determine a type of processing to be performed
(circle “7”). From extracted metadata, the scheduler 216 can
modify the current schedule to accommodate the new com-
puting task (circle “8”). In the particular example shown, the
modified schedule re-tasks offload processor 208. Thus,
switch controller 218 can direct the offload processor 208 to
store its current context (ContextA) in local memory 210
(circle <“9”).

Referring to FIG. 2-9, in response to switch controller 218,
offload processor(s) 208 can begin the new processing task
(circle “10”). Consequently, offload processor(s) 208 can
maintain a new context (ContextB) corresponding to the new
processing task.

Referring to FIG. 2-10, a processing task by offload pro-
cessor 208 can be completed. In the very particular embodi-
ment shown, such processing can modify write data 234-1,
and such data can be read out over system memory bus 228
(circle “11”). In response to the completion of processing
task, scheduler 216 can update a schedule. In the example
shown, in response to the updated schedule, switch controller
218 can direct offload processor(s) 208 to restore the previ-
ously saved context (ContextA) from local memory 210
(circle “12”). As understood from above, a restored context
(e.g., ContextA) may have been stored by an offload proces-
sor different from the one that saved the context in the first
place.

Referring to FIG. 2-11, with a previous context restored,
offload processor(s) 208 can return to processing data accord-
ing to the previous task (Session0) (circle “13”).

FIG. 2-12 shows a method 240 according an embodiment.
A method 240 can include detecting the write of session data
to a system memory with a module interface 242. Such an
action can include determining if received write data has
metadata (i.e., data identifying a particular processing). It is
understood that “session data” is data corresponding to a
particular processing task. Further, it is understood that MD
accompanying (or embedded within) session data can iden-
tify sessions having priorities with respect to one another. In
particular embodiments, a module interface can be a slave
interface for an in-line module.

A method 240 can determine if current offload processing
is sufficient for a new session or change of session 244. Such
an action takes into account a processing time required for
any current sessions.

If current processing resources can accommodate new ses-
sion requirements (Y from 244), a hardware schedule (sched-
ule for controlling offload processor(s)) can be revised and
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the new session can be assigned to an offload processor. If
current processing resources cannot accommodate new ses-
sion requirements (N from 244), one or more offload proces-
sors can be selected for re-tasking (e.g., a context switch) 250
and the hardware schedule can be modified accordingly 252.
The selected oftload processors can save their current context
data 254 and then switch to the new session 256. In some
embodiments, revision of a hardware schedule (252) can
include storing a context switch (e.g., in the case a new
session has a lower priority than current sessions). In such a
case, actions 254 and 256 would not occur until a later point
in time.

FIG. 2-13 shows a method 260 according another embodi-
ment. A method 260 can include determining if a computing
session for an offload processor is complete 262 or has been
terminated 264. In such cases (Y from 262/264), it can be
determined if the freed module offload processor (i.e., an
offload processor whose session is complete/terminated) has
a stored context 266. That is, it can be determined if freed
processor was previously operating on a session.

If a free offload processor was operating according to
another session (Y from 266), the offload processor can
restore the previous context 268. If a free offload processor
has no stored context, it can be assigned to an existing session
(if possible) 270. An existing hardware schedule can be
updated correspondingly 272.

Processor modules according to embodiments herein can
be employed to accomplish various processing tasks. Accord-
ing to some embodiments, processor modules can be attached
to a system memory bus to operate on network packet data.
Such embodiments will now be described.

FIG. 1-0 shows a system 101 that can transport packet data
to one or more computational units (one shown as 100)
located on a module, which in particular embodiments, can
include a connector compatible with an existing memory
module. In some embodiments, a computational unit 100 can
include a processor module as described in embodiments
herein, or an equivalent. A computational unit 100 can be
capable of intercepting or otherwise accessing packets sent
over a memory bus 116 and carrying out processing on such
packets, including but not limited to termination or metadata
processing. A system memory bus 116 can be a system
memory bus like those described herein, or equivalents (e.g.,
228).

According to some embodiments, packets corresponding
to a particular flow can be transported to a storage location
accessible by, or included within computational unit 100.
Such transportation can occur without consuming resources
of a host processor module 106¢, connected to memory bus
116. In particular embodiments, such transport can occur
without interrupting the host processor module 106¢. In such
an arrangement, a host processor module 106¢ does not have
to handle incoming flows. Incoming flows can be directed to
computational unit 100, which in particular embodiments can
include a general purpose processor 108i. Such general pur-
pose processors 108i can be capable of running code for
terminating incoming flows. In one very particular embodi-
ment, a general purpose processor 108/ can run code for
terminating particular network flow session types, such as
Apache video sessions, as but one example.

In addition or alternatively, a general purpose processor
108; can process metadata of a packet. In such embodiments,
such metadata can include one or more fields of a header for
the packet, or a header encapsulated further within the packet.

Referring still to FIG. 1-0, according to embodiments, a
system 101 can carry out any of the following functions: 1)
transport packets of a flow to a destination occupied by, or
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accessible by, acomputational unit 100 without interrupting a
host processor module 106¢; 2) transport packets to an off-
load processor 108i capable of terminating session flows (i.e.,
the offload processor is responsible for terminating session
flows); 3) transport packets to midplane switch that can pro-
cess the metadata associated with a packet and make a switch-
ing decision; 4) provide a novel high speed packet terminat-
ing system.

Conventional packet processing systems can utilize host
processors for packet termination. However, due to the con-
text switching involved in handling multiple sessions, con-
ventional approaches require significant processing overhead
for such context switching, and can incur memory access and
network stack delay.

In contrast to conventional approaches, embodiments as
disclosed herein can enable high speed packet termination by
reducing context switch overhead of a host processor.
Embodiments can provide any of the following functions: 1)
offload computation tasks to one or more processors via a
system memory bus, without the knowledge of the host pro-
cessor, or significant host processor involvement; 2) intercon-
nect servers in a rack or amongst racks by employing offload
processors as switches; or 3) use I/O virtualization to redirect
incoming packets to different offload processors.

Referring still to FIG. 1-0, a system 101 can include an [/O
device 102 which can receive packet or other I/O data from an
external source. In some embodiments I/O device 102 can
include physical or virtual functions generated by the physi-
cal device to receive a packet or other I/O data from the
network or another computer or virtual machine. In the very
particular embodiment shown, an /O device 102 can include
anetwork interface card (NIC) having input buffer 102a (e.g.,
DMA ring buffer) and an [/O virtualization function 1025.

According to embodiments, an 1/0 device 102 can write a
descriptor including details of the necessary memory opera-
tion for the packet (i.e. read/write, source/destination). Such
a descriptor can be assigned a virtual memory location (e.g.,
by an operating system of the system 101). I/O device 102
then communicates with an input output memory manage-
ment unit (IOMMU) 104 which can translate virtual
addresses to corresponding physical addresses with an
IOMMU function 1045. In the particular embodiment shown,
a translation look-aside buffer (TLB) 104a can be used for
such translation. Virtual function reads or writes data between
1/0 device and system memory locations can then be
executed with a direct memory transfer (e.g., DMA) via a
memory controller 1065 of the system 101. An I/O device 102
can be connected to IOMMU 104 by a host bus 112. In one
very particular embodiment, a host bus 112 can be a periph-
eral interconnect (PCI) type bus. IOMMU 104 can be con-
nected to a host processing section 106 at a central processing
unit I/O (CPUIO) 1064. In the embodiment shown, such a
connection 114 can support a HyperTransport (HT) protocol.

In the embodiment shown, a host processing section 106
can include the CPUIO 1064, memory controller 1065, pro-
cessing core 106¢ and corresponding provisioning agent
1064.

In particular embodiments, a computational unit 100 can
interface with the system bus 116 via standard in-line module
connection, which in very particular embodiments can
include a DIMM type slot. In the embodiment shown, a
memory bus 116 can be a DDR3 type memory bus. Alternate
embodiments can include any suitable system memory bus.
Packet data can be sent by memory controller 1065 via
memory bus 116 to a DMA slave interface 110a. DMA slave
interface 110a can be adapted to receive encapsulated read/
write instructions from a DMA write over the memory bus
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116. It is noted that in some embodiments, an interface (e.g.,
110a) can form part of a processor (i.e., 110a and 108i can be
parts of the same processor).

A hardware scheduler (1085/c/d/e/h) can perform traffic
management on incoming packets by categorizing them
according to flow using session metadata. Packets can be
queued for output in an onboard memory (1105/108a/108m)
based on session priority. When the hardware scheduler deter-
mines that a packet for a particular session is ready to be
processed by the offload processor 108i, the onboard memory
is signaled for a context switch to that session. Utilizing this
method of prioritization, context switching overhead can be
reduced, as compared to conventional approaches. That is, a
hardware scheduler can handle context switching decisions
and thus optimize the performance of the downstream
resource (e.g., offload processor 108).

As noted above, in very particular embodiments, an offload
processor 108i can be a “wimpy core” type processor.
According to some embodiments, a host processor 106¢ can
be a “brawny core” type processor (e.g., an X86 or any other
processor capable of handling “heavy touch” computational
operations). While an I/O device 102 can be configured to
trigger host processor interrupts in response to incoming
packets, according to embodiments, such interrupts can be
disabled, thereby reducing processing overhead for the host
processor 106¢. In some very particular embodiments, an
offload processor 108i can include an ARM, ARC, Tensilica,
MIPS, Strong/ARM or any other processor capable of han-
dling “light touch” operations. Preferably, an offload proces-
sor can run a general purpose operating system for executing
a plurality of sessions, which can be optimized to work in
conjunction with the hardware scheduler in order to reduce
context switching overhead.

Referring still to FIG. 1-0, in operation, a system 101 can
receive packets from an external network over a network
interface. The packets are destined for either a host processor
106¢ or an oftfload processor 1087 based on the classification
logic and schematics employed by 1/0 device 102. In particu-
lar embodiments, /O device 102 can operate as a virtualized
NIC, with packets for a particular logical network or to a
certain virtual MAC (VMAC) address can be directed into
separate queues and sent over to the destination logical entity.
Such an arrangement can transfer packets to different entities.
In some embodiments, each such entity can have a virtual
driver, a virtual device model that it uses to communicate with
virtual network interfaces it is connected to.

According to embodiments, multiple devices can be used
to redirect traffic to specific memory addresses. So, each of
the network devices operates as ifitis transferring the packets
to the memory location of a logical entity. However, in reality,
such packets are transferred to memory addresses where they
can be handled by one or more offload processors (e.g., 108i).
In particular embodiments such transfers are to physical
memory addresses, thus logical entities can be removed from
the processing, and a host processor can be free from such
packet handling.

Accordingly, embodiments can be conceptualized as pro-
viding a memory “black box” to which specific network data
can be fed. Such a memory black box can handle the data
(e.g., process it) and respond back when such data is
requested.

Referring still to FIG. 1-0, according to some embodi-
ments, I/O device 102 can receive data packets from a net-
work or from a computing device. The data packets can have
certain characteristics, including transport protocol number,
source and destination port numbers, source and destination
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1P addresses, for example. The data packets can further have
metadata that is processed (1084) that helps in their classifi-
cation and management.

1/0 device 102 can include, but is not limited to, peripheral
component interconnect (PCI) and/or PCI express (PCle)
devices connecting with a host motherboard via PCI or PCle
bus 9 (e.g., 112). Examples of I/O devices include a network
interface controller (NIC), a host bus adapter, a converged
network adapter, an ATM network interface, etc.

In order to provide for an abstraction scheme that allows
multiple logical entities to access the same /O device 102, the
1/0 device may be virtualized to provide for multiple virtual
devices each of which can perform some of the functions of
the physical /O device. The 10 virtualization program (e.g.,
102b) according to an embodiment, can redirect traffic to
different memory locations (and thus to different offload pro-
cessors attached to modules on a memory bus). To achieve
this, an [/O device 102 (e.g., a network card) may be parti-
tioned into several function parts; including controlling func-
tion (CF) supporting input/output virtualization (IOV) archi-
tecture (e.g., single-root IOV) and multiple virtual function
(VF) interfaces. Each virtual function interface may be pro-
vided with resources during runtime for dedicated usage.
Examples of the CF and VF may include the physical function
and virtual functions under schemes such as Single Root [/O
Virtualization or Multi-Root I/O Virtualization architecture.
The CF acts as the physical resources that sets up and man-
ages virtual resources. The CF is also capable of acting as a
full-fledged 1O device. The VF is responsible for providing an
abstraction of a virtual device for communication with mul-
tiple logical entities/multiple memory regions.

The operating system/the hypervisor/any of the virtual
machines/user code running on a host processor 106¢ may be
loaded with a device model, a VF driver and a driver for a CF.
The device model may be used to create an emulation of a
physical device for the host processor 106¢ to recognize each
of'the multiple VFs that are created. The device model may be
replicated multiple times to give the impression to a VF driver
(a driver that interacts with a virtual IO device) that it is
interacting with a physical device of a particular type.

For example, a certain device module may be used to
emulate a network adapter such as the Intel® Ethernet Con-
verged Network Adapter (CNA) X540-T2, so that the I/O
device 102 believes it is interacting with such an adapter. In
such a case, each of the virtual functions may have the capa-
bility to support the functions of the above said CNA, i.e.,
each of the Physical Functions should be able to support such
functionality. The device model and the VF driver can be run
in either privileged or non-privileged mode. In some embodi-
ments, there is no restriction with regard to who hosts/runs the
code corresponding to the device model and the VF driver.
The code, however, has the capability to create multiple cop-
ies of device model and VF driver so as to enable multiple
copies of said I/O interface to be created.

An application or provisioning agent 106d, as part of an
application/user level code running in a kernel, may create a
virtual 1/0 address space for each VF, during runtime and
allocate part of the physical address space to it. For example,
if an application handling the VF driver instructs it to read or
write packets from or to memory addresses Oxaaaa to Ox{ftf,
the device driver may write I/O descriptors into a descriptor
queue with a head and tail pointer that are changed dynami-
cally as queue entries are filled. The data structure may be of
another type as well, including but not limited to a ring struc-
ture 102a or hash table.

The VF can read from or write data to the address location
pointed to by the driver. Further, on completing the transfer of
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data to the address space allocated to the driver, interrupts,
which are usually triggered to the host processor to handle
said network packets, can be disabled. Allocating a specific
1/O space to a device can include allocating said 10 space a
specific physical memory space occupied.

In another embodiment, the descriptor may comprise only
awrite operation, if the descriptor is associated with a specific
data structure for handling incoming packets. Further, the
descriptor for each of the entries in the incoming data struc-
ture may be constant so as to redirect all data write to a
specific memory location. In an alternate embodiment, the
descriptor for consecutive entries may point to consecutive
entries in memory so as to direct incoming packets to con-
secutive memory locations.

Alternatively, said operating system may create a defined
physical address space for an application supporting the VF
drivers and allocate a virtual memory address space to the
application or provisioning agent 1064, thereby creating a
mapping for each virtual function between said virtual
address and a physical address space. Said mapping between
virtual memory address space and physical memory space
may be stored in [IOMMU tables (e.g., a TLB 104a). The
application performing memory reads or writes may supply
virtual addresses to say virtual function, and the host proces-
sor OS may allocate a specific part of the physical memory
location to such an application.

Alternatively, VF may be configured to generate requests
such as read and write which may be part of a direct memory
access (DMA) read or write operation, for example. The
virtual addresses is be translated by the IOMMU 104 to their
corresponding physical addresses and the physical addresses
may be provided to the memory controller for access. That is,
the IOMMU 104 may modify the memory requests sourced
by the I/O devices to change the virtual address in the request
to a physical address, and the memory request may be for-
warded to the memory controller for memory access. The
memory request may be forwarded over a bus 114 that sup-
ports a protocol such as HyperTransport 114. The VF may in
such cases carry out a direct memory access by supplying the
virtual memory address to the [OMMU 104.

Alternatively, said application may directly code the physi-
cal address into the VF descriptors if the VF allows for it. If
the VF cannot support physical addresses of the form used by
the host processor 106¢, an aperture with a hardware size
supported by the VF device may be coded into the descriptor
so that the VF is informed of the target hardware address of
the device. Data that is transferred to an aperture may be
mapped by a translation table to a defined physical address
space in the system memory. The DMA operations may be
initiated by software executed by the processors, program-
ming the /O devices directly or indirectly to perform the
DMA operations.

Referring still to FIG. 1-0, in particular embodiments, parts
of computational unit 100 can be implemented with one or
more FPGAs. In the system of FIG. 1-0, computational unit
100 can include FPGA 110 in which can be formed a DMA
slave device module 110a and arbiter 110f. A DMA slave
module 110qa can be any device suitable for attachment to a
memory bus 116 that can respond to DMA read/write
requests. In alternate embodiments, a DMA slave module
110a can be another interface capable of block data transfers
over memory bus 116. The DMA slave module 110a can be
capable of receiving data from a DMA controller (when it
performs a read from a ‘memory’ or from a peripheral) or
transferring data to a DMA controller (when it performs a
write instruction on the DMA slave module 110a). The DMA
slave module 110a may be adapted to receive DMA read and
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write instructions encapsulated over a memory bus, (e.g., in
the form of'a DDR data transmission, such as a packet or data
burst), or any other format that can be sent over the corre-
sponding memory bus.

A DMA slave module 110a can reconstruct the DMA
read/write instruction from the memory R/W packet. The
DMA slave module 110a may be adapted to respond to these
instructions in the form of data reads/data writes to the DMA
master, which could either be housed in a peripheral device, in
the case of a PCle bus, or a system DMA controller in the case
of an ISA bus.

1/O data that is received by the DMA device 110a can then
queued for arbitration. Arbitration can include the process of
scheduling packets of different flows, such that they are pro-
vided access to available bandwidth based on a number of
parameters. In general, an arbiter 110f provides resource
access to one or more requestors. If multiple requestors
request access, an arbiter 110fcan determine which requestor
becomes the accessor and then passes data from the accessor
to the resource interface, and the downstream resource can
begin execution on the data. After the data has been com-
pletely transtferred to a resource, and the resource has com-
peted execution, the arbiter 110f can transfer control to a
different requestor and this cycle repeats for all available
requestors. In the embodiment of FIG. 1-10, arbiter 110/ can
notify other portions of computational unit 100 (e.g., 108) of
incoming data.

Alternatively, a computation unit 100 can utilize an arbi-
tration scheme shown in U.S. Pat. No. 7,813,283, issued to
Dalal on Oct. 12, 2010, the contents of which are incorporated
herein by reference. Other suitable arbitration schemes
known in art could be implemented in embodiments herein.
Alternatively, the arbitration scheme of the current invention
might be implemented using an OpenFlow switch and an
OpenFlow controller.

In the very particular embodiment of FIG. 1-0, computa-
tional unit 100 can further include notify/prefetch circuits
110¢ which can prefetch data stored in a bufter memory 1105
in response to DMA slave module 110q, and as arbitrated by
arbiter 110f. Further, arbiter 110 can access other portions of
the computational unit 100 via a memory mapped I/O ingress
path 110e and egress path 110g.

Referring to FIG. 1-0, a hardware scheduler can include a
scheduling circuit 1085/% to implement traffic management
of incoming packets. Packets from a certain source, relating
to a certain traffic class, pertaining to a specific application or
flowing to a certain socket are referred to as part of a session
flow and are classified using session metadata. Such classifi-
cation can be performed by classifier 108e.

In some embodiments, session metadata 1084 can serve as
the criterion by which packets are prioritized and scheduled
and as such, incoming packets can be reordered based on their
session metadata. This reordering of packets can occur in one
or more buffers and can modify the traffic shape of these
flows. The scheduling discipline chosen for this prioritiza-
tion, or traffic management (TM), can affect the traffic shape
of flows and micro-flows through delay (buffering), bursting
of traffic (buffering and bursting), smoothing of traffic (buft-
ering and rate-limiting flows), dropping traffic (choosing data
to discard so as to avoid exhausting the buffer), delay jitter
(temporally shifting cells of a flow by different amounts) and
by not admitting a connection (e.g., cannot simultaneously
guarantee existing service (SLAs) with an additional flow’s
SLA).

According to embodiments, computational unit 100 can
serve as part of a switch fabric, and provide traffic manage-
ment with depth-limited output queues, the access to which is
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arbitrated by a scheduling circuit 1085/%2. Such output queues
are managed using a scheduling discipline to provide traffic
management for incoming flows. The session flows queued in
each of these queues can be sent out through an output port to
a downstream network element.

It is noted that a conventional traffic management circuit
doesn’t take into account the handling and management of
data by downstream elements except for meeting the SLA
agreements it already has with said downstream elements.

In contrast, according to embodiments a scheduler circuit
1084/ can allocate a priority to each of the output queues and
carry out reordering of incoming packets to maintain persis-
tence of session flows in these queues. A scheduler circuit
1084/z can be used to control the scheduling of each of these
persistent sessions into a general purpose operating system
(OS) 108, executed on an offload processor 108i. Packets of
a particular session flow, as defined above, can belong to a
particular queue. The scheduler circuit 1085/z may control
the prioritization of these queues such that they are arbitrated
for handling by a general purpose (GP) processing resource
(e.g., offload processor 108i) located downstream. An OS
108; running on a downstream processor 108i can allocate
execution resources such as processor cycles and memory to
a particular queue it is currently handling. The OS 108; may
further allocate a thread or a group of threads for that particu-
lar queue, so that it is handled distinctly by the general pur-
pose processing element 108/ as a separate entity. The fact
that there can be multiple sessions running on a GP process-
ing resource, each handling data from a particular session
flow resident in a queue established by the scheduler circuit,
tightly integrates the scheduler and the downstream resource
(e.g., 108i). This can bring about persistence of session infor-
mation across the traffic management and scheduling circuit
and the general purpose processing resource 108;.

Dedicated computing resources (e.g., 1087), memory space
and session context information for each of the sessions can
provide a way of handling, processing and/or terminating
each of the session flows at the general purpose processor
108;i. The scheduler circuit 1085/% can exploit this function-
ality of the execution resource to queue session flows for
scheduling downstream. The scheduler circuit 1085/% can be
informed of the state of the execution resource(s) (e.g., 108i),
the current session that is run on the execution resource; the
memory space allocated to it, the location of the session
context in the processor cache.

According to embodiments, a scheduler circuit 1085/z can
further include switching circuits to change execution
resources from one state to another. The scheduler circuit
1085/z can use such a capability to arbitrate between the
queues that are ready to be switched into the downstream
execution resource. Further, the downstream execution
resource can be optimized to reduce the penalty and overhead
associated with context switch between resources. This is
further exploited by the scheduler circuit 1085/% to carry out
seamless switching between queues, and consequently their
execution as different sessions by the execution resource.

A scheduler circuit 1085/% according to embodiments can
schedule different sessions on a downstream processing
resource, wherein the two are operated in coordination to
reduce the overhead during context switches. An important
factor in decreasing the latency of services and engineering
computational availability can be hardware context switching
synchronized with network queuing. In embodiments, when a
queue is selected by a traffic manager, a pipeline coordinates
swapping in of the cache (e.g., .2 cache) of the corresponding
resource (e.g., 1087) and transfers the reassembled /O data
into the memory space of the executing process. In certain
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cases, no packets are pending in the queue, but computation is
still pending to service previous packets. Once this process
makes a memory reference outside of the data swapped, the
scheduler circuit (1085/%2) can enable queued data from an /O
device 102 to continue scheduling the thread.

In some embodiments, to provide fair queuing to a process
not having data, a maximum context size can be assumed as
data processed. In this way, a queue can be provisioned as the
greater of computational resource and network bandwidth
resource. As but one very particular example, a computation
resource can be an ARM A9 processor running at 800 MHz,
while a network bandwidth can be 3 Gbps of bandwidth.
Given the lopsided nature of this ratio, embodiments can
utilize computation having many parallel sessions (such that
the hardware’s prefetching of session-specific data offloads a
large portion of the host processor load) and having minimal
general purpose processing of data.

Accordingly, in some embodiments, a scheduler circuit
1085/z can be conceptualized as arbitrating, not between
outgoing queues at line rate speeds, but arbitrating between
terminated sessions at very high speeds. The stickiness of
sessions across a pipeline of stages, including a general pur-
pose OS, can be a scheduler circuit optimizing any or all such
stages of such a pipeline.

Alternatively, a scheduling scheme can be used as shown in
U.S. Pat. No. 7,760,715 issued to Dalal on Jul. 20, 2010,
incorporated herein by reference. This scheme can be useful
when it is desirable to rate limit the flows for preventing the
downstream congestion of another resource specific to the
over-selected flow, or for enforcing service contracts for par-
ticular flows. Embodiments can include arbitration scheme
that allows for service contracts of downstream resources,
such as general purpose OS that can be enforced seamlessly.

Referring still to FIG. 1-0, a hardware scheduler according
to embodiments herein, or equivalents, can provide for the
classification of incoming packet data into session flows
based on session metadata. It can further provide for traffic
management of these flows before they are arbitrated and
queued as distinct processing entities on the offload proces-
SOrS.

In some embodiments, offload processors (e.g., 108i) can
be general purpose processing units capable of handling
packets of different application or transport sessions. Such
offload processors can be low power processors capable of
executing general purpose instructions. The offload proces-
sors could be any suitable processor, including but not limited
to: ARM, ARC, Tensilica, MIPS, StrongARM or any other
processor that serves the functions described herein. Such
offload processors have a general purpose OS running on
them, wherein the general purpose OS is optimized to reduce
the penalty associated with context switching between differ-
ent threads or group of threads.

In contrast, context switches on host processors can be
computationally intensive processes that require the register
save area, process context in the cache and TLB entries to be
restored if they are invalidated or overwritten. Instruction
Cache misses in host processing systems can lead to pipeline
stalls and data cache misses lead to operation stall and such
cache misses reduce processor efficiency and increase pro-
cessor overhead.

In contrast, an OS 108; running on the offload processors
108 in association with a scheduler circuit 1085/n, can oper-
ate together to reduce the context switch overhead incurred
between different processing entities running on it. Embodi-
ments can include a cooperative mechanism between a sched-
uler circuit and the OS on the offload processor 1087, wherein
the OS sets up session context to be physically contiguous
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(physically colored allocator for session heap and stack) in
the cache; then communicates the session color, size, and
starting physical address to the scheduler circuit upon session
initialization. During an actual context switch, a scheduler
circuit can identify the session context in the cache by using
these parameters and initiate a bulk transfer of these contents
to an external low latency memory. In addition, the scheduler
circuit can manage the prefetch of'the old session if'its context
was saved to a local memory 108g. In particular embodi-
ments, alocal memory 108g can be low latency memory, such
as a reduced latency dynamic random access memory
(RLDRAM), as but one very particular embodiment. Thus, in
embodiments, session context can be identified distinctly in
the cache.

In some embodiments, context size can be limited to ensure
fast switching speeds. In addition or alternatively, embodi-
ments can include a bulk transfer mechanism to transfer out
session context to a local memory 108g. The cache contents
stored therein can then be retrieved and prefetched during
context switch back to a previous session. Different context
session data can be tagged and/or identified within the local
memory 108g for fast retrieval. As noted above, context
stored by one offload processor may be recalled by a different
offload processor.

In the very particular embodiment of FIG. 1-0, multiple
offload processing cores can be integrated into a computation
FPGA 108. Multiple computational FPGAs can be arbitrated
by arbitrator circuits in another FPGA 110. The combination
of computational FPGAs (e.g., 108) and arbiter FPGAs (e.g.,
110) are referred to as “XIMM” modules or “Xockets DIMM
modules” (e.g., computation unit 100). In particular applica-
tions, these XIMM modules can provide integrated traffic and
thread management circuits that broker execution of multiple
sessions on the offload processors.

FIG. 1-0 also shows an offload processor tunnel connection
608%, as well as a memory interface 108» and port 1081
(which can be an accelerator coherency port (ACP)). Memory
interface 108 can access buffer memory 108a.

FIG. 1-1 shows a system flow according to an embodiment.
Packet or other I/O data can be received at an I/O device 120.
An /O device can be physical device, virtual device or com-
bination thereof. Interrupts generated from the [/O data
intended for a host processor 124 can be disabled, allowing
such /O data to be processed without resources of the host
processor 124.

An IOMMU 121 can map received data to physical
addresses of a system address space. DMA master 125 can
transmit such data to such memory addresses by operation of
amemory controller 122. Memory controller 122 can execute
DRAM transfers over a memory bus with a DMA Slave.
Upon receiving transferred /O data, a hardware scheduler
123 can schedule processing of such data with an offload
processor 126. In some embodiments, a type of processing
can be indicated by metadata within the I/O data. Further, in
some embodiments such data can be stored in an onboard
memory 129. According to instructions from hardware
scheduler 123, one or more offload processors 126 can
executing computing functions in response to the I/O data. In
some embodiments, such computing functions can operate on
the I/O data, and such data can be subsequently read out on
memory bus via a read request processed by DMA Slave 127.

Parallelization of tasks into multiple thread contexts is well
known in art to provide for increased throughput. Processors
architectures such as MIPS may include deep instructions
pipelines to improve the number of instructions per cycle.
Further, the ability to run a multi-threaded programming
environment results in enhanced usage of existing processor
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resources. To further increase parallel execution on the hard-
ware, processor architecture may include multiple processor
cores. Multi-core architectures comprising of the same type
of cores, referred to as homogeneous core architectures, pro-
vide higher instruction throughput by parallelizing threads or
processes across multiple cores. However, in such homoge-
neous core architectures, the shared resources, such as
memory, are amortized over a small number of processors.

Memory and I/O accesses can incur a high amount of
processor overhead. Further, context switches in conven-
tional general purpose processing units can be computation-
ally intensive. It is therefore desirable to reducing context
switch overhead in a networked computing resource handling
a plurality of networked applications in order to increase
processor throughput. Conventional server loads can require
complex transport, high memory bandwidth, extreme
amounts of data bandwidth (randomly accessed, parallelized,
and highly available), but often with light touch processing:
HTML, video, packet-level services, security, and analytics.
Further, idle processors still consume more than 50% of their
peak power consumption.

In contrast, according to embodiments herein, complex
transport, data bandwidth intensive, frequent random access
oriented, ‘light’touch processing loads can be handled behind
a socket abstraction created on the offload processor cores. At
the same time, “heavy” touch, computing intensive loads can
be handled by a socket abstraction on a host processor core
(e.g., x86 processor cores). Such software sockets can allow
for a natural partitioning of these loads between ARM and
x86 processor cores. By usage of new application level sock-
ets, according to embodiments, server loads can be broken up
across the offload processing cores and the host processing
cores.

FIG. 3 shows protocol stacks that can be included in a
system according to embodiments. A host processor (e.g.,
106¢) can include a brawny core protocol stack 317. Such a
protocol stack 317 can include one or more applications (Ap-
plication) 318 sitting on an operating system (OS) 319.
Unlike conventional host processing stacks, an OS can
include a Xockets Socket 330 and Xockets Tunneling Driver
320 which can access XIMMs as described herein or equiva-
lents. In particular embodiments, Socket 330 can facilitates
communication between a host processor and an offload pro-
cessor module (e.g., 100) and Driver 320 can enable trans-
mission of packet data to an offload processor module (e.g.,
100) (e.g., Ethernet-over-DDR tunneling). A brawny core
protocol stack 317 can further include a Hypervisor 312 to
supervise sessions and/or enable virtual switches 310 as
described herein, or equivalents.

An offload processor can include wimpy core protocol
stack 300. In the embodiment shown, such a protocol stack
300 can include a single session OS 302 which can run an
application 303. Additional software functions 304 can con-
trol context switching, prefetching of data, and memory
mapped scheduling. As packets belonging to different ses-
sions ingress, the offload processors can rapidly switch con-
texts and read from different parts of memory in order to
service them. Queuing and reassembly functions (320) can
take decrypted incoming fragments of data, assemble them
into their original form and queue them for processing on one
of multiple offload processors onboard a module (e.g., 100).
Input-output memory management software (e.g., [IOMMU
01'308) can be provided in order to facilitate safe sharing and
usage of physical memory when the arbitration processor
switches between virtual sessions for incoming packets.
Direct memory access (e.g., R‘RDMA of 308) can allow for
direct read/write to an internal memory of a module (e.g.,
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100). An offload processor can also utilize a virtual switching
software (312) to provide switching as described herein.
Header services (310) can process header data of received
packets.

Example embodiments of offload processors can include,
but are not limited to, ARM A9 Cortex processors, which have
a clock speed of 800 MHz and a data handling capacity of 3
Ghz. The queue depth for the traffic management circuit can
be configured to be the smaller of the processing power and
the network bandwidth. Given the lopsided nature of this
ratio, in order to handle complete network bandwidth, ses-
sions can be of a lightweight processing nature. Further, ses-
sions to can be switched with minimum context switch over-
head to allow the offload processor to process the high
bandwidth network traffic. Further, the offload processors can
provide session handling capacity greater than conventional
approaches due to the ability to terminate sessions with little
or no overhead. The offload processors according to embodi-
ments are favorably disposed to handle complete offload of
Apache video routing, as but one very particular embodiment.

Alternatively in another embodiment, when equipped with
many XIMMs, each containing multiple “wimpy” cores, sys-
tems may be placed near the top of rack, where they can be
used as a cache for data and a processing resource for rack hot
content or hot code, a means for interconnecting between
racks and TOR switches, a mid tier between TOR switches
and second-level switches, rack-level packet filtering, log-
ging, and analytics, or various types of rack-level control
plane agents. Simple passive optical mux/demux-ing can
separate high bandwidth ports on the x86 systems into many
lower bandwidth ports as needed.

Embodiments can be favorably disposed to handle Apache,
HTML, and application cache and rack level mid plane func-
tions. In other embodiments, a network of XIMMs and a host
x86 processors may be used to provide routing overlays.

FIG. 4 is a flow schematic wherein network packets 450 are
transferred to offload processors 430 mounted with memory
device 410, which can be wimpy core devices, completely
without intervention of the host CPU 420, which can be a
brawny core device. The offload processors 430 can act as
full-fledged processors hosting server applications. In one
embodiment, packets 450 can be received via an 1/O device
440 (e.g., NIC). A host processor 420 can be free to execute
other operations 660 while offload processors 430 service
network packets 450.

FIG. 5 is an alternate embodiment, in which server loads
are partitioned such that packet meta data processing, routing
overlays, filtering, packet logging and other hygiene func-
tions are offloaded to the offload processors (530) mounted
with memory devices 510, while and the host processor (520)
implements server sessions. Offload processors 530 can be
wimpy core devices, while host processor 520 can be a
brawny core device. As in the case of FIG. 4, packets can flow
through an I/O device 540 and offload processors 530 can be
mounted with a memory device 510.

In another embodiment, a network of offload processor
modules (i.e., XIMMs), each comprising a plurality of said
offload processors may be employed to provide video over-
lays by associating said offload processors with local memory
elements, including closely located DIMMSs or solid state
storage devices (SSDs). The network of XIMM modules may
be used to perform memory read or writes for prefetching the
data contents before they are serviced. In this case, real-time
transport protocol (RTP) can be processed before packets
enter traffic management, and their corresponding video data
can be pre-fetched to match the streaming. Prefetches can be
physically issued as (R)DMAs to other (remote) local
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DIMMs/SSDs. For enterprise applications, the number of the
videos is limited and can be kept in local Xockets DIMMs.
For public cloud/content delivery network (CDN) applica-
tions, this allows a rack to provide a shared memory space for
the corpus of videos. The prefetching may be setup from any
memory DIMM on any machine.

It is anticipated that prefetching can be balanced against
peer-to-peer distribution protocols (e.g. P4P) so that blocks of
data can be efficiently sourced from all relevant servers. The
bandwidth metric indicates how many streams can be sus-
tained when using 10 Mbps (1 Mbps) streams. As the stream
bandwidth goes down the number of streams goes up and the
same session limitation becomes manifest in the RTP pro-
cessing of server. Architecture according to such embodi-
ments can allow over 10,000 high definition streams to be
sustained in a 1U (one rack unit) form factor.

In an alternate embodiment shown in FIG. 6, a complex
publish and subscribership model, for handling pipelined
computational tasks partitioned across a network ofx86 cores
and offload processor cores, can be implemented. Each task in
the pipeline may be handled by the type of cores that are most
favorably disposed for it. For example, offload processor
modules (e.g., Xockets DIMMSs) may be employed to carry
out acceleration of Map-Reduce algorithms by an order of
magnitude. The midplane defined by Xockets DIMMs can
drive and receive the large PCI-e 3.0 bandwidth connecting
Map steps with Reduce steps within a rack and outside of the
rack. Because the shuffle step is often the bottleneck, the
number of reducers is kept to a minimum so that CPUs are not
overwhelmed with having to filter keys. With traffic-managed
according to embodiments, the number of Reducers can rival
the number of Mappers.

FIG. 6 shows a method which can start 602 and fetch input
data from afile system (e.g., Hadoop Distributed File System)
604. Such data can be fetched to wimpy core devices (e.g.,
offload processors as described herein or equivalents). Such
input data can be partitioned into splits by the wimpy core
devices 606. Input pairs (which can include a key and value)
for such splits can be obtained 608. A map function can be
performed on all input pairs with brawny core devices (e.g.,
host processor(s)) 610. All the mapping operation results can
be reduced and sorted based on key values with brawny core
devices 612. Results can be written back to the file system
614. Such an operation can be accomplished via wimpy core
devices. A method may then end 616.

Alternatively, embodiments can employ the Xocket
DIMMs to implement rack level disks using memory mapped
file paradigm. Such embodiments can effectively unify all of
the contents on the Xockets DIMMs on the rack to every x86
processor socket.

It should be appreciated that in the foregoing description of
exemplary embodiments of the invention, various features of
the invention are sometimes grouped together in a single
embodiment, figure, or description thereof for the purpose of
streamlining the disclosure aiding in the understanding of one
or more of the various inventive aspects. This method of
disclosure, however, is not to be interpreted as reflecting an
intention that the claimed invention requires more features
than are expressly recited in each claim. Rather, as the fol-
lowing claims reflect, inventive aspects lie in less than all
features of a single foregoing disclosed embodiment. Thus,
the claims following the detailed description are hereby
expressly incorporated into this detailed description, with
each claim standing on its own as a separate embodiment of
this invention.

It is also understood that the embodiments of the invention
may be practiced in the absence of an element and/or step not
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specifically disclosed. That is, an inventive feature of the
invention may be elimination of an element.

Accordingly, while the various aspects of the particular
embodiments set forth herein have been described in detail,
the present invention could be subject to various changes,
substitutions, and alterations without departing from the
spirit and scope of the invention.

What is claimed is:
1. A system, comprising:
an offload processor module that includes
at least one offload processor having a data cache, the
offload processor including a slave interface config-
ured to receive write data and provide read data over a
memory bus comprising parallel address lines and
parallel data lines;
the offload processor module further including context
memory; and
logic coupled to the at least one offload processor and
context memory and configured to detect predeter-
mined write operations over the memory bus; and
a memory bus controller connected to the slave interface
via the memory bus; wherein
the offload processor is configured to execute operations on
data received over the memory bus as data writes to
system memory addresses, and to output context data to
the context memory, and read context data from the
context memory.
2. The system of claim 1, wherein
the offload processor module is electrically connected on a
board that further includes a host processor different
from the at least one oftload processor.
3. The system of claim 1, wherein:
the at least one oftfload processor includes multiple offload
processors connected to the offload processor module.
4. The system of claim 1, wherein
the memory bus is configured to operate using DDR3 pro-
tocols.
5. The system of claim 1, further including:
the slave interface comprises a direct memory access
(DMA) slave.
6. A system, comprising:
a memory bus comprising parallel address lines and data
lines; and
at least one offload processor module that includes
an in-line module connector configured to physically
connect the processor module to at least one in-line
memory slot of the memory bus;
at least one integrated circuit device (IC) mounted onthe
module that includes
at least one offload processor comprising a central
processing unit and cache memory, and including a
slave interface configured to receive write data and
provide read data over the memory bus
at least one context memory coupled to the offload
processor, and
logic coupled to the offload processor and context
memory and configured to detect predetermined
write operations to system memory locations over
the system memory bus as operations for execution
by the at least one offload processor.
7. The system of claim 6, wherein
the offload processor module is physically present and
electrically connected on a board that includes a host
processor different from the at least one offload proces-
SOr.
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8. The system of claim 6, wherein:

that at least one offload processor includes multiple offload
processors.

9. The system of claim 6, wherein

the memory bus is configured to operate using DDR3 pro-
tocols.

10. The system of claim 6, further including:

the slave interface comprises a direct memory access
(DMA) slave.

11. The system of claim 6, wherein:

the in-module connector comprises a dual-in-line memory
module (DIMM) connector.

12. The system of claim 6, wherein:

the at least one IC includes a first IC comprising the at least
one offload processor embedded with the logic.

13. The system of claim 6, wherein:

the atleastone IC includes at least one programmable logic
IC configured to provide at least the logic.

14. The system of claim 6, wherein:

the at least one IC includes at least one memory IC config-
ured to function as the context memory.

15. The system of claim 6, wherein:

the at least one IC further includes a buffer memory con-
figured to store write data received over the system
memory bus, the buffer memory having a slower access
time than the context memory.
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